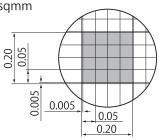
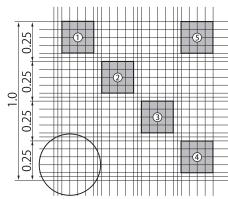

4 Grid Cell Counter Plate

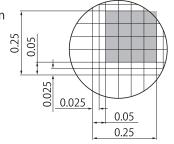


N [Neubauer Improved]

177-112C

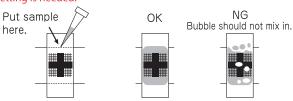


1/10mmdeep, 1/400 & 1/16sqmm



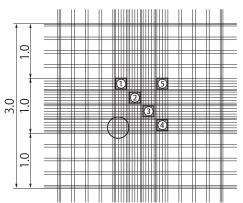
T [Thoma]

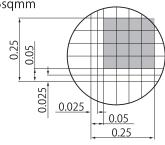
177-312C



1/10mmdeep, 1/400sqmm

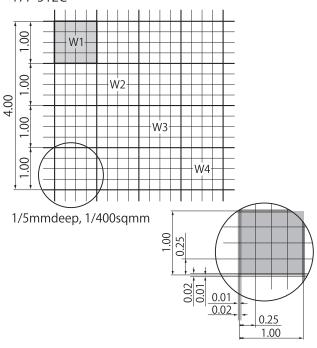
How to use


- 1. Pipette 6 μ L sample from the sample inlet, slowly. *Pipette 12 μ L only for Fuchs Rosenthal type.
 - *When injecting into the sample inlet is difficult, several times of pipetting is needed.


- 2. Set the plate on a microscope and keep it still for 2-3 minutes.
- 3. Count cells referring to a rule in "Cell Counting Method"
- 4. Calculate accoring to the method of each type.

B [Burker-Turk]

177-212C

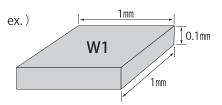


1/10mmdeep, 1/400 & 1/25sqmm

F (Fuchs Rosenthal)

177-512C

Cell Counting Method


■To count large cells such as cultured cells.

Leukocyte count $\bf A$ per 1 μ L is calculated by formula below, when cell counts in large compartments W1,W2,W3,W4 (each amounts to 16 midium complatments) average to be $\bf a$.

$A = a \times 10 \times Dilution Rate$

**Adjust so that the count in a large compartment (16 midium compartments) is around 100.

Large compartment dimension

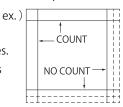
A cube of $1 \text{mm} \times 1 \text{mm} \times 0.1 \text{mm}$

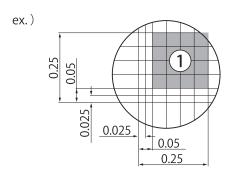
The volume of a large compartment (16midium compartment) is $1 \text{mm} \times 1 \text{mm} \times 0.1 \text{mm} = 0.1 \text{mm}^3 = 0.1 \,\mu\text{L}$ When cell count average over W1~W4 is a, the cell count per $0.1 \,\mu\text{L}$ of the liquid used for counting is **a**.

Therefore, cell count **A** per 1 μ L of the original liquid is

$$A = \{a / (1mm \times 1mm \times 0.1mm)\} \times Dilution Rate$$

 $A = (a/0.1 \mu L) \times Dilution Rate$


 $A = a \times 10 \times Dilution Rate$


■To count small cells such as yeasts, blood cells, etc.

Count cells in each compartment ①,②,③,④,⑤(the total amounts to 80 minimum compartments) and sum up. Blood cell count \mathbf{R} per 1 μ L is calculated by the formula below when the total blood cell count summed up is \mathbf{r} .

$R = r \times 50 \times Dilution Rate$

- **A gap between the cell counts of any 2 midium compartments (16 minimum compartments) must not exceed 20.
- % Any set of 16 minimum compartments can be taken as a midium compartment $\bigcirc \sim \bigcirc$, but they need to be well spread.
- ※ (1) In case of triple lines, use the most inner line.
 - (2) Count cells on the top and left lines. Cells on the bottom and right lines are not to be counted.

The volume of a cube $0.2 \text{mm} \times 0.2 \text{mm} \times 0.1 \text{mm}$ is

$$4 \times 10^{-3} \text{mm}^3 = 4 \times 10^{-3} \mu \text{L}$$

Sum up the cell counts in $1 \sim 5$.

ightarrow It amounts to the cell count in 5 imes 4 imes10⁻³ μ L. When the total cell count of $ilde{1}$ \sim $ilde{1}$ \sim 5 summed up is $\bf r$. the cell count in 2 imes10⁻² μ L is $\bf r$.

Therefore, cell count **R** per 1 μ L of the original liquid is

$$R = \{r/5 \times (0.2mm \times 0.2mm \times 0.1mm)\} \times \text{Dilution Rate}$$

$$R = \{r/2 \times 10^{-2} \mu L\} \times Dilution Rate$$

$$R = r \times 50 \times Dilution Rate$$

Manufactured and sold by:

FUKAEKASEI co., LTD.

Head Office: 2-2-7 Murotani, Nishi-ku, Kobe 651-2241, JAPAN TEL +81-78-991-4477 FAX +81-78-991-4491 E-mail: info@watson.co.jp